Undergraduate Engineering Summer School

FLOW

Grand Industrial Challenges in France

May 23rd – June 17th 2022

PROVISIONAL COURSES SUMMARY AND SYLLABUS

CONTENT

Scientific courses (lectures, labs + scientific visit) (64h, 7 ECTS*) to
choosefrom:
 FEAT: Food, winE, wATer3
o SEM: Sustainable Energy and Materials8
o DIP: Data and information processing 12
French language courses and sociocultural activities (24h, 2 ECTS*)18
Tutored cross-disciplinary project on Sustainability (12h, 1 ECTS*)20

^{*1} ECTS = 15 - 20 hours of workload completed by the student (lectures, labs, projects, personal work...)
2 European Credits (ECTS) are equivalent to 1 American Credit

FLOW Grand Industrial Challenges in France

SCIENTIFIC COURSES

(64h - 7ECTS)

<u>TOPIC</u> <u>FEAT: FOOD - WINE - WATER</u> (64h – 7 ECTS)

INTRODUCTION TO FOOD ENGINEERING
WINE TECHNOLOGY
WATER SCIENCE AND TECHNOLOGY

This track offers about 64 hours of lectures and projects related to some challenges in the fields of food and water sciences. First sessions will present the major unit operation in food processing systems and how to master them to improve sustainability. The second sessions will give a synthetic presentation of one of the most fermented beverage iconic of the South of France: wine, from harvest to winemaking and aroma. The last sessions will focus on conventional and innovative technologies for water treatment, waste management and on ecological systems and biodiversity preservation. During these 4 weeks you will be interacting with researchers experts in various fields of food and water and discovering the activities developed in the South of France. Lecturers are members of two major engineering schools of Montpellier: Polytech Montpellier and Institut Agro (SupAgro Montpellier). The provisional syllabus of the track is detailed below. It includes some references that might support you during the school or guide yourway for a more thorough exploration of the covered material.

INTRODUCTION TO FOOD ENGINEERING

Analyzing and designing major unit operations in food processing systems

Introduction to food industry, food engineering, engineering basics

- Impacts on chemistry
- **‡** Energy sources, energy balances
- Psychrometrics, thermodynamics
- Heat transfer
- Preservation
- Drying, dehydration
- Thermal processing
- Fluid flow
- Extrusion processing
- Examples, exercises

<u>Assessment:</u> Written exam, multiple-choice questions, calculation questions, short questions

- Heldman, D. R., Lund, D. B. 2007. Handbook of Food Engineering, 2nd ed. CRC Press.
- Singh, R. P., Heldman, D. R. 2014. Introduction to Food Engineering, 5th edition. Elsevier.
- Valantas, K. J., Rotstein, E., Singh, R. P. 1997. Handbook of Food Engineering Practice. CRC Press.
- Singh, R. P. Explore Food Engineering: http://www.rpaulsingh.com

WINE TECHNOLOGY

A synthetic presentation of one of the most consumed fermented beverage:

Wine 1

Lecture: Understanding wine technology from harvest to winemaking. Selection of grape variety, "terroir", vineyard management and quality of wine. Process of white, red, sweet and sparkling wine-making, fermentations, aging.

• Wine 2

Lecture: Aroma compounds in wines (how they are formed during winemaking and wine aging) and sensory evaluation of wines (methodology and explanation of wine sensory attributes). Presentation of the Mediterranean wines (category, food matching, history, market).

Assessment: Multiple-choice questions

- Understanding Wine Chemistry, Andrew L. Waterhouse Gavin L. Sacks David W. Jeffery, Wiley, 2016, doi 10.1002/9781118730720
- Handbook of Enology, Volume 1 The Microbiology of Wine and Vinifications 2nd Edition P. Ribéreau-Gayon, D. Dubourdieu, B. Donèche and A. Lonvaud, 2006 John Wiley & Sons.
- Handbook of Enology, Volume 2 The Chemistry of Wine, Stabilization and Treatments, 2nd Edition P. Ribéreau-Gayon, Y. Glories, A. Maujean and D. Dubourdieu, 2006 John Wiley & Sons.
- Wine Flavour Chemistry, Second edition, Jokie Bakker Ronald J. Clarke, 2012
- Wine science: principles and applications. Ronald S. Jackson. Third Edition, 2018, Elsevier.
- Wine tasting: A professionnal handbook. Ronald S. Jackson. Third Edition, 2018, Elsevier.
- Wine Grapes: A Complete Guide to 1,368 Vine Varieties. J. Robinson, 2012, Penguin books
- Terroir and Other Myths of Winegrowing, M. Mathews, 2016, University of California press
- The Science of Grapevines: Anatomy and Physiology, M. Keller, Third Edition, 2020, Elsevier

WATER SCIENCE AND TECHNOLOGY

• ASSURING CLEAR WATER

Lectures + small projects: Conventional and innovative technologies for water treatment and waste water management. Water contamination can be very diverse and can be harmful for both environment and human health. The content of this course willbe divided into three main parts. The first part will be dedicated to the presentation ofthe different type of water contaminants/pollution (anthropogenic or natural pollution) and how it can affect the ecosystem and human health. In a second part, the different water treatment techniques will be presented for both wastewater management and drinking water production. Finally, a presentation of innovative water technology based on membrane processes for specific applications will be details in the last part of this lecture.

Reference sources:

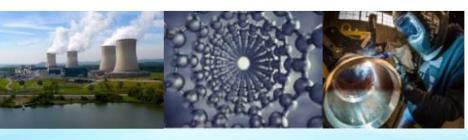
- Vigneswaran S. & Visvanathan C. 1995. Water treatment processes: Simple option. CRC Press Published 224 Pages ISBN 9780849382833
- SUSTAINABLE AQUATIC ECOSYSTEMS (4h with students + 3.5h work at home) Lectures and small projects on the ecosystem ecological status and biodiversity preservation. This course aims at introducing ecological basic knowledge of a river system and aquatic organisms, and providing tools to evaluate the ecological status of rivers. Human impacts (such as dam construction) jeopardize ecosystem functioning and biological resources sustainability, and solutions for the ecological continuity restoration are presented.

Reference sources:

- Schmutz S. & Sendzimir J. 2018. *Riverine Ecosystem Management. Science for Governing Towards a Sustainable Future.* Aquatic Ecology Series Vol 8. 562 pages

Assessment: Multiple-choice questions, small-project

<u>SEM: SUSTAINABLE ENERGY AND</u>


<u>MATERIALS</u>

(64h - 7 ECTS)

ENERGETIC SOLUTIONS IN THE SOUTH OF FRANCE MATERIALS FOR SUSTAINABLE DEVELOPMENT NANOMATERIALS AND NANOTECHNOLOGIES

This track offers about 64 hours of lectures, labs and projects related to some challenges in the fields of materials: from miniaturization to energetical and environmental issues. You will learnhow to select or develop a material for a specific application, taking into account its environmental impact and adapting the size to gain in efficiency, to bring new properties.... During these 4 weeks you will be interacting with researchers experts in various fields of materials and discovering the activities developed in the South of France. The provisional syllabus of the track is detailed below. It includes some references that might support you during the school or guide your way for a more thorough exploration of the covered material.

ENERGETIC SOLUTIONS IN THE SOUTH OF FRANCE

This course aims at presenting three different energetic solutions developed in the south of France. The context and energetical issues will be introduced followed as well as the concept of energy and its emergence throughout history, some recalls of the main principles...

Then three different energy conversions will be developed through the eyes of material engineers.

We will then focus on the materials involved in the reactor, the requirement for these materials and the radiation damages occurring in materials (1). Finally, explaining the security issues, the of materials selection for transport, recycling and storage of nuclear wastes will be presented.

The second topic is related to batteries (2) in the past, the present and the future: How does it work? What are the main electrical features of a battery? What is the link between the "inside" functioning and the "outside" (black box) performances?

The third part will be dedicated to solar photovoltaic and thermal power starting with the principle of the thermodynamic conversion of concentrated solar energy. The challenges related to thermal storage, and night power release will also be discussed. We will present the Different commercial solar thermal power plants in the world and the vision for the future... In order to better understand the Photovoltaic solution, Photovoltaic effect will be explained, the interest for concentrated photovoltaic solution will be detailed. Finally, we will evoke the photovoltaic energy distribution within the French electricity grid and the management of PV power plant.

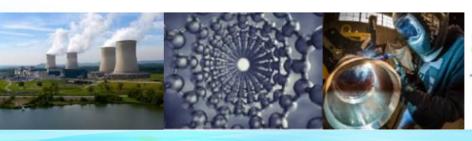
Welding is present in all industrial infrastructures, and particularly in Energy and Materials plants. This course will give an introduction on welding science and technologies. (3)

Assessment: Multiple-choice questions

Reference sources:

- (1) An Introduction to Nuclear Materials: Fundamentals and Applications by K. Linga Murty, Indrajit Charit, Publisher: Wiley-VCH; 1 edition (January 29, 2013)
- (2) Electrochemical Energy Storage (Anglais) Broché 3 mars 2015 by Jean-Marie Tarasco, Patrice Simon, ISTE Ltd. (3 mars 2015)
- (3) Welding Level 1 Trainee Guide, 3e, Paperback by NCEER

MATERIALS FOR SUSTAINABLE DEVELOPMENT


Concept, norms and practical tools

The objective of this course is to give an introduction to engineering methodology for Eco design. The industrial LCA SIMAPRO2 software will be used for practical lessons and project.

- Materials for sustainable development: context and history
- Life cycle assessment method: life cycle and Emission/Extraction inventory
- Life cycle assessment method: Impact factor calculation
- LCA practical lessons: Inventory, Environmental Impact and Case study
- LCA project

Assessment: Multiple-choice questions

- "Environmental Life Cycle Assessment" 1st Edition, Olivier Jolliet et al. CRC Press (2015) 302 Pages, ISBN 9781439887660 CAT# K14053
- https://www.pre-sustainability.com/download/SimaPro8IntroductionToLCA.pdf

NANOMATERIALS AND NANOTECHNOLOGIES

New properties and tools, innovation and social issues

Lectures will be dedicated to the presentation of the synthesis methods, the structure and the electronic and optical properties of nanomaterials. A special emphasis will be made on carbon nanostructures (graphene, carbon nanotubes, fullerenes), metallic nanoparticles and porous silica nanomaterials. The norms and rules, as well as the issues of toxicity and sustainability will also be discussed. The main characterization techniques of nanomaterials will be presented, and illustrated through practical problems. Among these, scanning and transmission electron microscopy, atomic force microscopy, scanning ion microscopy, focused ion beam, electron diffraction, GISAXS and reflectometry will be introduced. The goal of these lessons is to provide students with a set of characterization tools with a comprehensive description of their relevance and limits regarding the addressed problem.

<u>Assessment:</u> Multiple-choice questions

- Nanomaterials: An Introduction to Synthesis, Properties and Applications, 2nd edition, Dieter Vollath, Wiley-VCH (2013)
- Nanomaterials and Nanochemistry, C. Bréchignac, P. Houdy, M. Lahmani ed, Springer (2006)
- Nanomaterials Chemistry: Recent Developments and New Directions by C. N. R. Rao, Achim Muller, Anthony K. Cheetham, Wiley-VCH, 1 edition (July, 2007)
- The Physics and Chemistry of Nanosolids by Frank J. Owens, Charles P. Poole, Jr. Wiley-Blackwell (mai 2008)
- *Nanomaterials*, Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, DFG Report, Wiley VCH (2013)



DIP: DATA AND INFORMATION PROCESSING

PROGRAMMABLE DIGITAL ELECTRONICS
OPERATING AND PROGRAMMING COMPUTERS BIG
DATA MANAGEMENT AND ANALYZING

This track offers 64 hours of lectures and labs around the transformation of measures from our environment to signal, then to data and finally to the analysis of data by most sophisticated methods. First sessions will concentrate on signal (acquisition, filter, processing) then on systems to handle the information digitally (electronic cards, operating systems, programs on computers) or transmit it to the Internet. On a wider scope, information becomes data, and you will discover the basics of Data Science: innovative ways of storing data, mining data to extract meanings or intentions by machine learning and artificial intelligence methods.

Lecturers are members of Université Montpellier or of the Montpellier antenna of IBM corp.

The syllabus of the track is detailed below. It includes some references that might support you during the school or guide your way for a more thorough exploration of the covered material.

PROGRAMMABLE DIGITAL ELECTRONICS

DIGITAL FILTERS

<u>Keywords:</u> Digital filters: Finite Impulse Response (FIR) and Infinite Response (IIR) Filters, Digital filter simulation with Matlab.

Filtering is one of the most widely used functions of digital signal processing. Filtering enables to remove undesired frequencies from the signals of interest (for instance remove the DC offsets and high frequency noise from the electronic components of the sensors used for signal acquisition). The aim of this lab is to handle analysis simulation of digital filters (i.e. display the frequency response according to the filter definition, study the filter stability through zero-pole representation in the complex plane) as well as the main synthesis functions (i.e. compute the adequate coefficients for digital filters according to a given response description) using Matlab. A brief introduction on the digitization of analog (i.e. physical) signals will be presented.

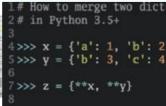
Reference sources:

- Wanhammar Lars, Saramäki Tapio, "*Digital Filters using MATLAB*" (Springer, 1st ed., 2020), ISBN 978-3-030-24063-9

INTRODUCTION TO PROGRAMMABLE DIGITAL ELECTRONICS

In this lab you will concentrate on the way signals can be acquired from physical measurements by sensors. In return, devices rely on light, sound or motor actuators to act on their environment. We'll study the particular case of LEDs (which are easy to simulate, remember we deliver this year remote learning sessions). Then you will discover the world of programmable digital electronics through the programming of an Arduino board in order to control actuators and receive input from sensors.

Reference sources:


- Brian Evans "Beginning Arduino Programming: Writing Code for the Most Popular Microcontroller Board in the World" (APress, 1st ed., 2011)

• FINITE STATE MACHINES

In this lab you will concentrate on the way signals can be acquired from physical measurements by sensors. In return, devices rely on light, sound or motor actuators to act on their environment. We'll study the particular case of LEDs (which are easy to simulate, remember we deliver this year remote learning sessions). Then you will discover the world of programmable digital electronics through the programming of an Arduino board in order to control actuators and receive input from sensors.

Reference sources:

- https://www.allaboutcircuits.com/textbook/digital/chpt-11/finite-state-machines/
- Modeling Software with Finite State Machines: A Practical Approach

OPERATING AND PROGRAMMING COMPUTERS

OPERATING SYSTEMS

We will first shortly introduce the roles of operating systems to manage information and resources in a computer. We will then focus on the case of Unix systems, investigating how this system manages users, files, processes and on the powerful command line commands. Then a lab will invite you to practice commands on such a system. Activities will be guided thanks to a remote learning system. You will also be introduced to file sharing between distant computers and to issuing commands on a remote computer.

Reference sources:

- Operating System Concepts, 9th Edition, Wiley & Sons, by A. Silberschatz, P.B. Galvin, G. Gagne, 2012.

PYTHON PROGRAMMING

A lecture will focus on the main programming concepts and present the way they can be phrased in the Python language. Python is recognized as one of the top programming languages and one with the easiest learning curve. It is used for numerous applications from interfacing with sensors to programming games, analyzing data, and even

programming web apps. A lab will then allow you to manipulate various data structures in Python.

Reference sources:

- Python Crash Course, E. Matthes, No Starch Press, 2016
- Web tutorial: https://docs.python.org/3/tutorial/index.html

INTRODUCTION TO THE INTERNET OF THINGS

The Internet of Things (IoT) is considered as the third Internet revolution and is mainly about physical objects and devices communicating data on the Internet. The accumulated data helps people or programs to remotely monitor places (homes, crop fields, highways, product lines...), objects (cars, dispensers, transit...) and to raise alerts. In this you will apply your freshly acquired python skills to interact with sensors and actuators connected to raspberry PIs. We will then concentrate on communicating data from a computer to the internet, through http or dedicated protocols and try different platforms that collect and publish IoT data. The goal here is to become familiar with systems extracting data from their environment and communicating it for analysis by high-level methods.

Reference sources:

- Raspberry Pi By Example, by A. Pajankar and A. Kakkar, 2016

BIG DATA MANAGEMENT AND ANALYZING

• SIMULATING DATA

<u>Keywords:</u> simulation, multi-agent system, strategies, key performance indicators, block programming.

Many studies are conducted from a modeling of our environment or of human interactions. Most often models are first tested on simulated data and when validated, they're applied to real data. This lab presents a very simple way of leading simulations on human day-to-day interactions. We will then apply simulations to evaluate several competing strategies to circumvent the spreading of the COVID virus.

Assessment: Short survey of the lab

\$ BASICS OF SQL AND NOSQL DATABASES

Keywords: Databases, Sql, Nosql, Big Data, Data Storage.

This Lab introduces the main concepts and a broad view of databases and modern big data storage solutions. Through a lecture we introduce the basis of the relational database model and SQL query language. Next, we show the evolution of data management solutions based on different needs: web, social networks, big data, clouds, etc. Then we provide more details of a Nosql document based storage solution, MongoDB, that can be useful in many applications. Practical exercises are proposed to experiment both SQL over a relational database and MongoDB.

Assessment: Short survey of the lab

EXPLORING GRAPH DATABASES

<u>Keywords:</u> Graph Databases, Graph Processing Engine, Graph Storage Engine, Pattern Matching.

Graph databases are useful for a lot of use cases where links between data matter. Let's follow the graph together for a journey in the world of fraud detection, recommendation, impact analysis, social networks, and see how we can make data processing and analysis through pattern matching to solve this issues. Through a lecture, we introduce the basis of NoSQL graph databases, then a lab lets you explore the main concepts and a broad view of NoSQL graph databases and related issues.

Reference sources:

- Graph Databases, 2nd Edition, Ian Robinson, Jim Webber, Emil Eifrem, O'Reilly Ed.

Assessment: Short quiz at the end of the session

DATA MINING

This course presents the main methods of data mining from the computer science perspective: supervised and unsupervised algorithms such as decision trees, naive Bayes, k-nearest neighbours, k-means... and pattern mining (frequent item-sets, association rules, sequential patterns). The course also focuses on evaluation methods (confusion matrix, quality measures). You will explore several datasets and methods through a hands-on lab.

Assessment: Short survey of the lab

IOT & AI PROTOTYPING

Discover a cloud computing platform (IBM Cloud) and measure the interest proposed by this large catalog of services around the Internet of Things (IoT), Artificial Intelligence (IA) and data management, and quickly develop IoT solutions, with data collection and augmentation using AI services (natural language processing, computer vision, etc.). A lab will then allow you to build an IoT data processing chain through Node-Red. This block-based graphical coding interface will allow you to acquire, store, monitor and explore data without coding.

Reference sources:

- https://www.ibm.com/design/ai/basics/ml/
- https://nodered.org/docs/tutorials/
- https://developer.ibm.com/technologies/machine-learning/tutorials/

<u>Assessment</u>: Screenshots of the lab key steps

FRENCH LANGUAGE AND SOCIOCULTURAL ACTIVITIES

(2 ECTS)

- Presentation of France and immersion in the Occitanie Region (Regional economy, Art of living in Occitanie)
- Basic French vocabulary (gastronomy and culture)
- Introduction to interculturality, to the cultural specificities of France, and sociocultural activities

This track of about 24 hours offers a presentation of France and an immersion in the Occitanie Region (Regional economy, Art of living in the South of France).

In small working groups you will learn the basic French vocabulary (gastronomy and culture). During these 4 weeks you will also benefit from an introduction to interculturality and the cultural specificities of France.

FRANCE AND OCCITANIE REGION

Geographical, economic and cultural presentation of France and Occitanie.

- France: presentation of the richness and diversity of France from a geographical, social, cultural and culinary point of view.
- Occitanie: presentation on the geographical and natural specifications. Focus onsome key cities.

REGIONAL ECONOMY

- Economic assets: work on the specificities of the Occitanie Region. Comparison between clichés and reality.
- The South de France products: coastal specificities, agriculture, wine and food products of Occitanie.

ART OF LIVING IN OCCITANIE

- Great traditions of various festivals: work around drama, dance, music, Mediterranean cinema.
- Regional specialties: Provence markets, Camargue races, culinary specialties.

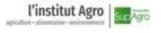
INTERCULTURALITY (AND SOCIOCULTURAL ACTIVITIES)

- The concepts of culture, cultural dimensions, intercultural relations, culture shock
- · Specificities of the French culture and links with its History, Settlement, Geography

<u>Assessment:</u> Production of a personal video integrating the linguistic and cultural concepts presented and discussed.

- Meyer E. 2016. The Culture Map: Decoding How People Think, Lead, and Get Things Done Across Cultures. PublicAffairs. First Trade Paper Edition
- Goethe Institute. Lifeswap: https://vimeo.com/user20904244

TUTORED CROSS-DISCIPLINARY PROJECT ON SUSTAINABILITY


(12h - 2 ECTS)

This course consists of a tutored project on sustainable development in an international context. During the 4 weeks, you will work in small teams supervised by a professor. The objective of the project is to work in groups from different cultures and scientific disciplines in order to write the specifications of an innovative product/service responding to one of the 17 sustainable development issues established by the United Nations. During the 4 weeks, the projects will be conducted by alternating face-to-face learning sessions and non-face group work sessions. This project also covers an initiation to project management.

Assessment: Oral defence of the project

Reference source:

 $- \underline{https://www.un.org/development/desa/disabilities/envision2030.html}\\$

IF YOU HAVE ANY QUESTIONS PLEASE CONTACT

polytech-flow@umontpellier.fr

https://www.polytech.umontpellier.fr/international/summer-school

